DOI:10.13228/j. boyuan. issn1000-7571.009609

电感耦合等离子体原子发射光谱法测定电池级 混合稀土金属中稀土配分和非稀土杂质

张桂梅1,王芸薇2,高寒冰3,周晓东1

(1. 中国北方稀土(集团)高科技股份有限公司冶炼分公司,内蒙古包头 014010;2. 东北大学数学与统计学院,河北秦皇岛 066000;3. 湖南工学院机械工程学院,湖南衡阳 421000)

摘 要:盐酸溶解样品后,将稀土配分镧、铈、镨、钕和非稀土杂质铁、硅、锌、镁配制成混合标准 溶液系列并绘制校准曲线,保持标准溶液系列中稀土总量与试液中稀土总量一致以消除基体 效应,采用电感耦合等离子体原子发射光谱法(ICP-AES)同时测定电池级混合稀土金属中稀 土配分镧、铈、镨、钕和非稀土杂质铁、硅、锌、镁。进行了各元素分析谱线的选择,考察了稀土 元素对非稀土杂质元素及非稀土杂质元素间的干扰情况。各元素校准曲线线性回归方程的相 关系数均不小于 0.998 8。按照实验方法测定合成样品中稀土配分镧、铈、镨、钕,测定结果与 理论值一致,结果的相对标准偏差(RSD,n=11)不大于 3.0%。非稀土杂质铁、硅、锌、镁的检 出限为 0.001 0%~0.002 8%(质量分数),测定下限为 0.005 0%~0.014%(质量分数)。对 低锌低镁电池极混合稀土金属样品中非稀土杂质进行测定,测定值与参考值一致,测定结果的 相对标准偏差(RSD,n=11)为 1.3%~9.0%。按照实验方法测定实际电池级混合稀土金属 样品和富镧金属样品中稀土配分镧、铈、镨、钕和非稀土杂质铁、硅、锌、镁,测定值与其他分析 方法的结果基本一致。

关键词:电池级混合稀土金属;全谱直读;电感耦合等离子体原子发射光谱法;稀土配分;非稀 土杂质

文献标志码:A 文章编号:1000-7571(2016)01-0018-07

电池级混合稀土金属是生产镍氢动力电池的基础原料,直接影响镍氢电池的性能。如果稀土配分和非稀土杂质含量的波动大,会使镍氢电池的性能 变差,致粉化率高,储氢性能不稳定,充放电时间参 差不齐,使用寿命长短不一。目前稀土配分和非稀 土杂质测定相应的国标方法有 GB/T 16484—1996 《氯化稀土、碳酸稀土化学分析方法 氧化铈量的测 定》,GB/T 12690.5—2003《稀土金属及其氧化物 中非稀土杂质化学分析方法 铝、铬、锰、铁、钴、镍、 铜、锌、铅的测定电感耦合等离子体发射光谱法(方 法 1)/钴、锰、铅、镍、铜、锌、铝、铬的测定 电感耦合 等离子体质谱法(方法 2)》,GB/T 12690.11—2003 《稀土金属及其氧化物中非稀土杂质化学分析方法 镁量的测定 火焰原子吸收光谱》,GB/T 12690.62003《稀土金属及其氧化物中非稀土杂质化学分析 方法 铁量的测定 硫氰酸钾、1,10-二氮杂菲分光光 度法》,GB/T 12690.7—2003《稀土金属及其氧化 物中非稀土杂质化学分析方法 硅量的测定 钼蓝分 光光度法》。X射线荧光光谱法测定镧、铈、镨^[1],电 感耦合等离子体质谱法测定稀土总量和分量^[2], P507 萃淋树脂化学法测定镧^[3],分光光度法测定镨 和钕^[4]或稀土总量^[5],ICP-AES 法测定混合轻稀土 氧化物的稀土配分^[6+8]亦有报道。

本实验利用全谱直读型电感耦合等离子体原子 发射光谱仪分析速度快、准确度好、精密度高、多种 元素同时检测的特点,采用电感耦合等离子体原子 发射光谱法(ICP-AES)直接测定电池级混合稀土金 属中稀土配分和非稀土杂质元素,可满足测定要求。

收稿日期:2015-02-15

作者简介:张桂梅(1971-),女,高级工程师,从事稀土冶金分析研究工作;E-mail:bfxtfjzx@163.com

— 18 —

1 实验部分

1.1 仪器及主要工作参数

OPTIMA-7300 型电感耦合等离子体原子发射 光谱仪(美国 Perkin Elmer 公司)。仪器最佳工作 条件见表1。

表 1	ICP-AES 工作条件	
-----	--------------	--

参数 Parameter	工作条件 Working condition
高频发射功率/W	1 250
频率/MHz	40.68
气体流量(Ar)/(L/min)	15(冷却气);0.5(辅助气); 0.75(雾化气)
进样量/(mL/min)	1.5
蠕动泵泵速/(r/min)	25
观察方向	垂直
观测高度/mm	15
分光系统	中阶梯光栅,二维色散
光栅刻线数/(gv/mm)	79
检测器	SCD(分段式电荷耦合检测器)
积分时间/s	2~5

1.2 试剂

铁、硅、锌、镁单元素标准储备溶液(国家钢铁材

料测试中心):1 000 μg/mL;30%(V/V)过氧化氢、 盐酸、硝酸均为优级纯;氧化镧、氧化铈、氧化镨和氧 化钕(包头稀土研究院):质量分数均大于 99.999%,预先经900℃灼烧1h后,冷却至室温, 置于干燥器中待用。

单一稀土氧化物标准溶液:分别称取氧化镧、氧 化铈、氧化镨和氧化钕各 0.1 g(精确至 0.000 1 g) 于 4 个 100 mL 小烧杯中,加 10 mL 盐酸(氧化铈加 10 mL 硝酸,并滴加过氧化氢)至溶解完全,溶液分 别移入 100 mL 容量瓶中,定容,摇匀,得单一稀土 氧化物标准储备溶液,此溶液中氧化镧、氧化铈、氧 化镨和氧化钕的质量浓度均为 1 mg/mL;再将此溶 液逐级稀释成 100 μ g/mL 和 10 μ g/mL 单一稀土氧 化物标准工作溶液,控制酸度为 5%(V/V)。

稀土配分标准储备溶液的配制:按表 2 准确称 取氧化镧、氧化铈、氧化镨和氧化钕于 150 mL 烧杯中, 加 20 mL 硝酸(1+1),2~3 mL 过氧化氢,加热溶解完 全后,冷却,溶液转移至 200 mL 容量瓶中,定容,摇匀, 此溶液稀土总量的质量浓度为 10 mg/mL(单质与氧化 物换算系数:La/La₂O₃ = 0.852 6,Ce/CeO₂ = 0.814 0, $Pr/Pr_6O_{11} = 0.827$ 7,Nd/Nd₂O₃ = 0.857 3)。

	表 2 稀土配分标准储备溶液质量浓度
Table 2	Mass concentration of the rare earth distribution standard stock solution

	稀土配分 Rare earth distributio	标准储备溶液 I on standard stock solution I	稀土配分 Rare earth distributio	标准储备溶液Ⅱ on standard stock solutionⅡ
氧化物 Oxide	稀土配分标准储备溶液 I Rare earth distribution standard stock solution I 氧化物质量 折算单质质量浓度 Oxide mass/g Converting elemental mass concentration/(mg/mL) 0.469 1 2.00 1.228 4 5.00 0.241 6 1.00 0.466 6 2.00 稀土配分标准储备溶液 II Rare earth distribution standard stock solution III 有化物质量 折算单质质量浓度 Oxide mass/g Converting elemental mass Oxide mass/g 近の 0.586 4 2.50 1.351 4 5.50 0.145 0 0.60 0.226 6 1.40	折算单质质量浓度 Converting elemental mass concentration/(mg/mL)	氧化物质量 Oxide mass/g	折算单质质量浓度 Converting elemental mass concentration/(mg/mL)
La ₂ O ₃	0.469 1	2.00	0.539 5	2. 30
CeO ₂	1.228 4	5.00	1.302 2	5.30
Pr_6O_{11}	0.241 6	1.00	0.193 3	0.80
Nd_2O_3	0.466 6	2.00	0.373 3	1.60
	稀土配分 Rare earth distributio	标准储备溶液 III on standard stock solution III	—————————————————————————————————————	标准储备溶液 IV on standard stock solution IV
氧化物 Oxide	氧化物质量 Oxide mass/g	折算单质质量浓度 Converting elemental mass concentration/(mg/mL)	氧化物质量 Oxide mass/g	折算单质质量浓度 Converting elemental mass concentration/(mg/mL)
La ₂ O ₃	0.586 4	2.50	0.633 3	2.70
CeO ₂	1.351 4	5.50	1.425 0	5.80
Pr_6O_{11}	0.145 0	0.60	0.120 8	0.50
				1 00

非稀土杂质标准工作溶液的配制:分别移取 10.00 mL 1 000 μg/mL 铁、硅、锌、镁单元素标准储 备溶液于 4 个 100 mL 容量瓶中,控制酸度为 5% (V/V),定容,摇匀,此溶液中铁、硅、锌、镁的质量浓 度均为 100 μg/mL;再分取 10.00 mL 该溶液于 100 mL 容量瓶中,控制酸度为 5% (V/V),定容,摇匀, 此溶液中铁、硅、锌、镁的质量浓度均为 10 μg/mL。 实验用水为二次去离子水。

- 1.3 实验方法
- 1.3.1 样品前处理

称取 2 g(精确至 0.000 1 g)样品于 300 mL 烧 杯中,加入少量水和 10 mL 盐酸,加热溶解完全后, ZHANG Gui-mei, WANG Yun-wei, GAO Han-bing, et al. Determination of rare earth distribution and non-rare earth impurities in battery grade mischmetal by inductively coupled plasma atomic emission spectrometry. Metallurgical Analysis, 2016, 36(1):18-24

转移至 200 mL 容量瓶中,定容,摇匀,记为备用试 液。移取 5.00 mL 备用试液于 50 mL 容量瓶中,以 5%(V/V)盐酸定容,摇匀,待测。

1.3.2 标准溶液系列的配制

移取 10.00 mL 稀土配分标准储备溶液 I ~ IV 于 4 个 100 mL 容量瓶中,再分别移取 1.00、5.00、 10.00、20.00 mL 铁、硅、锌、镁均为 10 μ g/mL 的非 稀土杂质标准工作溶液于上述 4 个容量瓶中,以 5%(V/V)盐酸定容,摇匀。标准溶液系列中标准 1~标准 4 的稀土总量质量浓度为 1 000 μ g/mL,其 中稀土配分镧、铈、镨、钕和非稀土杂质元素铁、硅、 锌、镁的质量浓度见表 3。

表 3 标准溶液系列中各元素质量浓度

Table 3 Mass concentration of each element for standard

	solution series							nL
项目 Item	La	Ce	Pr	Nd	Fe	Si	Zn	Mg
空白	0	0	0	0	0	0	0	0
标准1	200	500	100	200	0.10	0.10	0.10	0.10
标准2	230	530	80	160	0.50	0.50	0.50	0.50
标准3	250	550	60	140	1.00	1.00	1.00	1.00
标准4	270	580	50	100	2.00	2.00	2.00	2.00

2 结果与讨论

2.1 分析线的选择

根据仪器谱线库提供谱线的灵敏度和干扰情况,预选分析线,然后分别使用质量浓度为 10 μg/ mL 的氧化镧、氧化铈、氧化镨和氧化钕单一稀土氧 化物标准工作溶液,进行扫描峰叠加以考察稀土元 素之间的光谱干扰情况;再结合电池级混合金属的 稀土配分,分取 10 mL 稀土配分标准储备溶液 II 于 100 mL 容量瓶中,控制酸度为 5%(V/V),配制稀 土总量质量浓度为 1 000 μg/mL 的溶液作为基体 溶液,将此溶液与 10 μg/mL 铁、硅、锌、镁单元素标 准工作溶液进行扫描峰叠加,考察稀土元素对非稀 土杂质元素及非稀土杂质元素间的干扰情况。选择 无谱线重叠干扰,或谱线干扰量可以忽略不计且信背 比高的谱线作为分析线^[911],选用的分析线干扰情况见 图 1,图 2。本实验最终选择的分析线见表 4。

2.2 稀土配分基体对非稀土杂质测定的影响

将铁、硅、锌和镁单元素标准储备溶液逐级稀释成 10 μg/mL单元素标准工作溶液各两份,控制 5%(V/ V)酸度。其中一份根据电池级混合稀土金属的配分,

图1 轻稀土元素间干扰

Fig. 1 Interference between light rare earth element

-20 -

e. Fe; f. Si; g. Zn; h. Mg. 图 2 稀土基体对非稀土杂质以及非稀土杂质元素间干扰

Fig. 2 Interference of rare earth matrix on non-rare earth impurities and interference between non-rare earth impurities

表4 各元素分析谱线

		Table	4 Spectral	line of each e	lement			
元素 Element	La	Ce	Pr	Nd	Fe	Si	Zn	Mg
波长 Wavelength/nm	384.883	418.660	422.303	406.109	238. 204	251.611	213.857	285.213

加入 10 mL 稀土配分标准储备溶液 Ⅱ,此溶液稀土 总量质量浓度为 1 000 µg/mL;另一份不加稀土 基体。

在选定的实验条件下,分别测定上述溶液中非 稀土杂质元素的发射强度。以不加稀土基体的相应 浓度非稀土杂质元素强度与加入稀土基体的非稀土 杂质元素强度的差值作为强度差 Δ*I*,结果见表 5。 表 5 结果表明:溶液中加入稀土总量质量浓度 为1 000 μg/mL 的基体,各非稀土杂质元素谱线强 度均有不同程度的下降。一般电池级混合稀土金属 中稀土总量在 99.10%~99.65%之间,为保证非稀 土杂质测定的正确度,本实验采用控制标准溶液系 列中稀土总量与试液中稀土总量一致来消除基体 效应。

元素 分析谱线		非稀土杂质 Intensity of non-ra	强度差 △I	
Element	Spectral line/nm	无稀土基体 No rare earth matrix/(×10 ⁶)	有稀土基体 Rare earth matrix/(×10 ⁶)	difference/($\times 10^6$)
Fe	238. 204	3.05	2.60	0.45
Si	251.611	1. 38	1.37	0.01
Zn	213.857	2.51	2.42	0.09
Mg	285.213	3.07	2.79	0.28

表5 稀土基体对非稀土杂质兀素测定的影	响
---------------------	---

re earth matrix on the determination of non-rare earth impurities

2.3 校准曲线

在仪器最佳工作条件下测定标准溶液系列,以 待测元素质量浓度为横坐标,发射强度为纵坐标,绘 制校准曲线。校准曲线的线性范围、线性回归方程 和相关系数见表 6。由表 6 可见:各元素校准曲线 的相关系数均大于0.998 8。

元素 分析谱线 Element Spectral line/nm		线性范围 Linearity range/(μg/mL)	线性方程 Linear equation	相关系数 Correlation coefficien
La	384.883	200~650	$I=211\ 354\ \rho$ -102 112	0.999 9
Ce	418.660	250~600	$I = 743 505 \rho + 11 905$	1.000 0
Pr	422.303	20~100	$I = 823 \ 427 \ \rho + 125 \ 467$	0.998 8
Nd	406.109	50~200	$I = 265 \ 042 \ \rho + 2 \ 421$	1.000 0
Fe	238.204	0.10~2.0	$I = 81 833 \rho + 5 480$	1.000 0
Si	251.611	0.10~2.0	$I = 75 \ 177 \ \rho + 805 \ 016$	1.000 0
Zn	213.857	0.10~2.0	$I = 415 952 \rho + 34 648$	0.999 8
Mg	285.213	0.05~2.0	$I = 4 315 990 \rho + 208 259$	1.000 0

表6 线性范围、线性回归方程和相关系数

2.4 稀土配分的正确度和精密度试验

按表7中各稀土元素质量分数理论值,准确称

取氧化镧、氧化铈、氧化镨和氧化钕,制成合成样品 5和合成样品6,进行精密度和正确度考察,见表7。

表 7 合成样品中稀土配分的测定结果(n=11)

Table 7	Determination	results of	rare earth	distribution	for	synthetic s	sample
---------	---------------	------------	------------	--------------	-----	-------------	--------

					合成样品 6	
元素 Element	理论值 Theoretical value w/%	测定值 Found w/%	RSD/%		测定值 Found w/%	RSD/%
La	25.00	24.93	1.2	63.00	62.98	0.56
Ce	53.00	52.85	0.38	25.50	25.55	1.1
Pr	6.00	6.22	1.2	3.00	2.83	3.0
Nd	16.00	16.06	0.55	8.50	8.54	2.4

2.5 非稀土杂质的检出限和测定下限

在仪器最佳工作条件下对空白溶液连续测定 11次,以3倍标准偏差计算铁、硅、锌、镁的检出限, 以检出限的5倍定义铁、硅、锌、镁的测定下限。见 表8。

表 8	非稀土杂质元素的检出限和测定下	限
-----	-----------------	---

 Table 8 Detection limit and low limit of determination

 for non-rare earth impurities

元素 Element	分析谱线 Spectral line/nm	检出限 Detection limit <i>w</i> /%	测定下限 Low limit of determination w/%				
Fe	238. 204	0.002 8	0.014				
Si	251.611	0.002 1	0.010				
Zn	213.857	0.001 0	0.005 0				
Mg	285.213	0.001 9	0.009 5				

2.6 非稀土杂质元素的正确度和精密度试验

按照实验方法,测定低锌低镁电池极混合稀土 金属样品中非稀土杂质元素铁、硅、锌、镁含量,并与 参考值进行对比,结果见表 9。

— 22 —

表 9 电池极混合稀土金属样品中非稀土杂质 元素测定结果 (n=11)

Table 9 Determination results of non-rare earth impurities

for battery grade mischmetal					
元素 Element	本法测定值 Found by proposed method w/%	RSD/%	参考值* Reference w/%		
Fe	0.16	1.3	0.17		
Si	0.017	8.4	0.020		
Zn	0.007 0	9.0	0.006 6		
Mg	0.067	2.6	0.069		

注:*铁使用硫氰酸钾、1,10-二氮杂菲分光光度法测定;硅使用 钼蓝分光光度法测定;锌使用电感耦合等离子体质谱法测定;镁使 用原子吸收光谱法测定。

3 样品分析

按照实验方法测定不同批次的富镧金属和电池 级混合稀土金属中稀土配分和非稀土杂质元素含 量。同时使用 X 射线荧光光谱法测定镧、铈、镨、钕 稀土配分,硫氰酸钾、1,10-二氮杂菲分光光度法测 定铁,钼蓝分光光度法测定硅,电感耦合等离子体质 谱法测定锌,原子吸收光谱法测定镁,结果见表10。

	表 10 富镧金属和电池级混合稀土金属样品测定结果								
Та	ble 10 Detern	nination resu	ilts of lanth:	anum-rich r	netal and ba	ttery grade	mischmetal	samples	w/%
样品号 Sample No.	方法 Method	La	Ce	Pr	Nd	Fe	Si	Zn	Mg
L DEL ME2001	ICP-AES	60.28	28.79	2.91	8.02	0.22	0.020	0.009 3	0.035
L-FFLME3001	其他方法	60.64	28.44	3.01	7.91	0.24	0.018	0.010	0.039
I DEL ME2002	ICP-AES	60.92	28.07	3.02	7.99	0.096	0.015	0.009 5	0.036
L-FFLME3002	其他方法	60.63	28.51	2.97	7.89	0.10	0.013	0.010	0.038
L DZ-ME2201	ICP-AES	28.56	50.64	5.10	15.70	0.12	0.019	0.006 4	0.063
L-FZIIVIE2001	其他方法	28.22	50.59	5.15	16.04	0.11	0.017	0.007 0	0.065
L D7-ME2802	ICP-AES	27.20	51.69	5.28	15.83	0.14	0.017	0.005 8	0.065
L-FZHWIE2803	其他方法	27.31	51.81	5.14	15.73	0.13	0.019	0.005 4	0.062

参考文献:

 [1] 姚强,王燕,朱字宏,等.X射线荧光光谱法测定稀土镁
 合金中镧、铈和镨含量[J].理化检验:化学分册,2013, 49(12):1515-1516.

YAO Qiang, WANG Yan, ZHU Yu-hong, et al. Determination of lanthanum, cerium and praseodymium contents in rare earth magnesium alloys by X-ray fluorescence spectrometry [J]. Physical Testing and Chemical Analysis Part B: Chemical Analysis, 2013, 49 (12): 1515-1516.

[2] 施意华,邱丽,唐碧玉,等.电感耦合等离子体质谱法测 定离子型稀土矿中离子相稀土总量及分量[J].冶金分 析,2014,34(9):14-15.

SHI Yi-hua, QIU Li, TANG Bi-yu, et al. Determination of total ionic-phase rare earth and component inion-adsorption rare earth ore by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2014, 34 (9):14-15.

[3] 梁远明,陈美斯,李柏开. P507 萃淋树脂分离稀土元素 的研究[J]. 华南师范大学学报:自然科学版, 1986(2): 61-65.

LIANG Yuan-ming, CHEN Mei-si, LI Bo-kai. Study of separation rare earth elements by P507 extraction resin [J]. Journal of South China Normal University: Natural Science Edition, 1986(2):61-65.

- [4] 张玻,贾江涛,廖春生,等. 分光光度法测定混合稀土中的钕[J].稀有金属,2008(4):540-542.
 ZHANG Bo, JIA Jiang-tao, LIAO Chun-sheng, et al. Determinaton of neodymium in the mixed rare earth by spectrophotometry[J]. Rare Metals, 2008(4):540-542.
- [5] 石如祥,张红玲. 偶氮胂Ⅲ光度法测定无铅锡基焊料中稀土总量[J]. 冶金分析,2014,34(5):72-75.

SHI Ru-xiang, ZHANG Hong-ling. Determination of total rare earth in lead-free tin-based solder by spectrophotometry with arsenazo M[J]. Metallurgical Analysis, 2014,34(5):72-75. [6] 崔爱端,张秀燕. ICP-AES 法测定镨钕氧化物及镨钕金 属中的镧、铈、钐、钇、铝和硅量[J].稀土,2006(4): 75-77.

CUI Ai-duan, ZHANG Xiu-yan. Determination of lanthanum, cerium, samarium, yttrium, aluminium and silicon contents in praseodymium neodymium oxide and praseodymium neodymium metal by inductively coupled plasma atomic emission spectrometry [J]. Rare Earth, 2006(4):75-77.

[7] 杜梅,刘晓杰. 电感耦合等离子体发射光谱法测定包头
 稀土矿中的稀土总量[J]. 岩矿测试,2014,33(3):
 218-223.

DU Mei, LIU Xiao-jie. Determination of the total amount of rare earth in baotou rare earth mine by inductively coupled plasma emission spectrometry [J]. Rock and Mineral Analysis, 2014, 33(3): 218-223.

 [8] 张杰,于永丽,威淑芳,等. 电感耦合等离子体原子发射 光谱法测定轻稀土元素[J]. 冶金分析,2009,29(4): 20-23.

ZHANG Jie, YU Yong-li, QI Shu-fang, et al. Determination of light rare earth elements by inductively coupled plasma atomic emission spectrometry [J]. Metallurgical Analysis, 2009, 29(4): 20-23.

- [9] 杜梅,许涛,吴文琪. 稀土标准分析方法中稀土元素分析 谱线的述评[J]. 稀土,2014(6):99-105.
 DU Mei,XU Tao,WU Wen-qi. Analysis spectral line review of rare earth elements in rare earth standard analysis method [J]. Rare Earth,2014(6):99-105.
- [10] 钱振彭,王长庆,陈维华.稀土元素 ICP-AES 光谱图 [M].北京:冶金工业出版社,1982.
- [11] 吴波英,黄少文. ICP-AES 在稀土元素分析中的抗干 扰技术的应用及进展[J].稀土,2005(5):20-25,63.
 WU Bo-ying, HUANG Shao-wen. Application and development of the correction techniques of interferences in the analysis of rare earth elements by ICP-AES [J]. Rare Earth,2005(5):20-25,63.

Determination of rare earth distribution and non-rare earth impurities in battery grade mischmetal by inductively coupled plasma atomic emission spectrometry

ZHANG Gui-mei¹, WANG Yun-wei², GAO Han-bing³, ZHOU Xiao-dong¹

(1. Smelting Branch of Northern China Rare Earth(Group) High-tech Co., Ltd., Baotou 014010, China;

2. College of Mathematics and Statistics of Northeastern University, Qinhuangdao 066000, China;

3. College of Mechanical Engineering of Hunan Institute of Technology, Hengyang 421000, China)

Abstract: The sample was dissolved with hydrochloric acid. The mixed standard solution series were prepared with the rare earth distribution (lanthanum, cerium, praseodymium and neodymium) and non-rare earth impurities (iron, silicon, zinc and magnesium) to draw the calibration curves. The total content of rare earth elements in standard solution series was consistent with those in sample solution to eliminate the matrix effect. The rare earth distribution (lanthanum, cerium, praseodymium and neodymium) and nonrare earth impurities (iron, silicon, zinc and magnesium) in battery grade mischmetal were simultaneously determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). The analytical lines for testing elements were selected. The interference of rare earth elements to the non-rare earth impurities as well as the mutual interference among non-rare earth impurities was investigated. The correlation coefficients (r) of linear regression equations of calibration curves were higher than 0.998 8. The rare earth distribution including lanthanum, cerium, praseodymium and neodymium in synthetic sample were determined according to the experimental method. The found results were consistent with the theoretical values, and the relative standard deviations (RSD, n=11) were not more than 3.0%. The detection limit of non-rare earth impurities including iron, silicon, zinc and magnesium was between 0. 001 0% and 0.002.8% (mass fraction). The low limit of determination was between 0.005.0% and 0.014% (mass fraction). The non-rare earth impurities in low-zinc low-magnesium battery grade mischmetal sample were determined, and the found results were consistent with the reference values. The RSD (n=11) was between 1.3% and 9.0%. The rare earth distribution (lanthanum, cerium, praseodymium and neodymium) and non-rare earth impurities (iron, silicon, zinc and magnesium) in actual battery grade mischmetal samples and lanthanum-rich metal samples were determined according to the experimental method, and the found results were basically consistent with those obtained by other analysis methods.

Key words: battery grade mischmetal; full spectrum direct reading; inductively coupled plasma atomic emission spectrometry; rare earth distribution; non-rare earth impurity